Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Expert Rev Anti Infect Ther ; : 1-8, 2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2241357

ABSTRACT

INTRODUCTION: In severe COVID-19 patients, acute respiratory distress syndrome (ARDS)-induced lung injury regularly causes a pulmonary fibrotic phase. There is no approved therapy for the COVID-19-induced pulmonary fibrosis. However, administration of an anti-fibrotic agent, in the early acute phase of the severe COVID-19 with ARDS, may improve the infection outcomes. AREAS COVERED: In this review, the main characteristics of nintedanib and its usefulness to treat COVID-19-induced fibrosis were studied. In July 2022, a literature search was performed from PubMed, Google Scholar, and the WHO databases for studies focusing on the properties, function, efficacy, and safety of nintedanib against different lung injuries. EXPERT OPINION: Nintedanib interferes with lung fibrosis and tumor angiogenesis by targeting multiple receptor tyrosine kinases (RTKs). Loss of RTKs activity leads to blocking downstream signaling cascades and inhibiting the proliferation and migration of lung fibroblasts. Targeting RTKs may be useful in the treatment of COVID-19 lung fibrosis. Nintedanib may be a superior agent compared to pirfenidone for the treatment of COVID-19 ARDS-related pulmonary fibrosis. Investigation of the efficacy and safety of nintedanib in the early stages of COVID-19-induced ARDS is critical since it may decrease the oxygen dependency and degree of lung fibrosis after the hospital discharge.

2.
Expert Rev Anti Infect Ther ; 19(8): 1029-1037, 2021 08.
Article in English | MEDLINE | ID: covidwho-998153

ABSTRACT

INTRODUCTION: At this time, there is no specific therapeutic or vaccine for treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, available drugs for treatment of other viral infections may be useful to treat COVID-19. AREAS COVERED: The focus of the current review was studying the main characteristics of favipiravir and its usefulness to treat COVID-19. An electronic search was done by using Pubmed and Google scholar. EXPERT OPINION: Based on the mechanism of action and safety of favipiravir, the drug may be a promising candidate for compassionate use against the SARS-CoV-2 infection. Favipiravir has a wide range of activity against many single-stranded RNA viruses, is well tolerated in humans and has a high barrier to resistance. However, high doses of the agent are necessary to obtain an efficient antiviral activity. Favipiravir is teratogen in pregnant women and associated with the hyperuricemia. Therefore, the administration of the drug should be well controlled. Investigating the antiviral prophylactic potency of favipiravir and search for its pro-drugs and/or analogs showing improved activity and/or safety are critical.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Pyrazines/therapeutic use , Adult , Amides/adverse effects , Amides/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Female , Humans , Pregnancy , Pyrazines/adverse effects , Pyrazines/pharmacology
3.
Drug Des Devel Ther ; 14: 3215-3222, 2020.
Article in English | MEDLINE | ID: covidwho-714750

ABSTRACT

The novel coronavirus 2019 (2019-nCoV), formally named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a novel human infectious coronavirus. The disease caused by SARS-CoV-2 is named COVID-19. Development and manufacturing of specific therapeutics and vaccines to treat COVID-19 are time-consuming processes. At this time, using available conventional therapeutics along with other treatment options may be useful to fight COVID-19. In different clinical trials, efficacy of remdesivir (GS-5734) against Ebola virus has been demonstrated. Moreover, remdesivir may be an effective therapy in vitro and in animal models infected by SARS and MERS coronaviruses. Hence, the drug may be theoretically effective against SARS-CoV-2. Remdesivir is a phosphoramidate prodrug of an adenosine C-nucleoside. By entrance into respiratory epithelial cells in human, the prodrug is metabolized to a nucleoside triphosphate as the active form. The nucleoside analog inhibits the viral RNA-dependent RNA polymerase (RdRp) by competing with the usual counterpart adenosine triphosphate (ATP). The nucleoside analog is incorporated into the generating RNA strand and causes a delayed stop in the viral replication process. Knowledge about the potential efficacy of remdesivir against coronaviruses has been restricted to in vitro studies and animal models. However, information related to COVID-19 is rapidly growing. Several clinical trials are ongoing for the management of COVID-19 using remdesivir. In this study, characteristics of remdesivir and its usage for treatment of COVID-19 are reviewed based on an electronic search using PubMed and Google Scholar.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacokinetics , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19 , Clinical Trials as Topic , Humans , Pandemics , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL